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Resumo

Os sistemas de controle atualmente empregados ao redor do mundo vem passando por um processo
de diversificacdo e evolugdo com o surgimento de novas tecnologias e teorias, e.g., o controle
moderno. A teoria de redes neurais € uma revolugao em diversas areas de conhecimento. Desde a
identificacdo de sistemas, previsdo de fun¢des temporais até andlises de correlacdo, esta teoria esta
se inserindo no cotidiano académico e empresarial cada dia mais. Muito se tem usado este
pensamento em controle, principalmente em controle adaptativo, e o uso de controladores neurais é
onde se situa este trabalho. Baseando-se em um canal de irrigacdo e em suas arquiteturas habituais
de controladores de nivel, estipulou-se um sistema de controle neural que, treinado em ambas as
arquiteturas habituais, apresentou peculiaridades de ambas as arquiteturas, bem como melhorias
comprovadas dado o benchmark utilizado para sua avaliacdo. Este estudo confirma a capacidade das
redes neurais de assimilar correlagdes ndo-explicitas de modo eficaz para o caso das arquiteturas

usuais de controle em canais de irrigacao.

Palavras-chave: Sistemas de Transporte de Agua, Redes Neurais, Controle Classico, Canal de Irrigacdo, Controle

Proporcional-Integral

Abstract

Control systems currently in use around the world has been undergoing a process of diversification
and evolution with the emergence of new technologies and theories, e.g., the modern control. The
theory of neural networks is a revolution in various fields of knowledge. From systems' identification,
forecasting temporal functions until correlation analysis, this theory is entering the academic and
business world every day. This thought is largely use in control, especially in adaptive control, and the
use of neural controllers is the main approach of this work. Based on an irrigation channel and in their
usual architectures of level controllers, it has set up a neural control system, trained on both the usual
architectures, which presented peculiarities of both architectures, as well as proven improvements
since the benchmark used for its evaluation. This study confirms the ability of neural networks to
assimilate non-explicit correlations effectively to the case of the usual architectures of control in

irrigation canals.

Keywords: Water Transportation Systems, Neural Networks, Classic Controller, Irrigation Canal, Proportional-

Integral Control
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1 Introducdo

O processo de renovacdo tecnoldgica, com o avancgo da ciéncia e da globalizacao,
um dos principais processos ocorrendo no mundo. Apesar de, historicamente, a tecnologia se
renovar continuamente, desde a revolucdo industrial a taxa dessa renovacdo anda em passos
largos e crescentes.

Certas industrias, entretanto, que outrora eram o berco das novas tecnologias,
hoje estdo emperradas no século passado. Um bom exemplo destes ramos sdo alguns
sistemas de transportes de agua.

Ainda é notdria a tecnologia romana na construcdo de seus imponentes
aquedutos, inclusive, sendo ainda mais majestoso o fato de muitos destes ainda estarem em
funcionamento. Por vezes a humanidade se fez reinar a natureza com eclusas, canais,
transposicoes e, talvez, por tantos trunfos, houve medo de se deixar a gléria do passado em
nome do progresso.

Em especifico no caso de canais de irrigacdo, os quais foram vastamente
implementados desde a Mesopotamia, foram os responsaveis pela evolucdo humana, abrindo
caminho para a conquista de zonas aridas e provendo maior capacidade da agricultura.

Contudo, hoje no mundo ainda existem muitos canais de irrigacdo operando com
processos antiquados de controle. Enquanto outros sistemas semelhantes evoluiram
rapidamente, como o controle de eclusas e barragens, pouco se fez na irrigagao.

Apesar disso, gracas ao pensamento em prol do meio ambiente, tais dreas da
indUstria comegaram a investir na sua atualizacdo tecnoldgica. O sensoriamento dos canais,
bem como a capacidade de se controlar as comportas se fez necessidade e, ao notarem os
ganhos que o sistema apresentava com tais implementag¢des, a evolugdo comegou a ser
dispersada.

Com base nesta premissa, este trabalho buscou evidenciar que mesmo teorias
relativamente recentes para a industria podem, neste momento, ter uma aplicagdo pratica
nos canais de irrigacao.

Utilizando-se de arquiteturas usualmente implementadas e de grande difusao,

mesmo que definidas sobre preceitos bdsico de controle classico, buscou-se encontrar um



controlador baseado em redes neurais que fosse capaz de representar melhoras substanciais
a tais arquiteturas, utilizando apenas os dados gerados por elas.

O caso de estudo ambienta-se em um simulador do Canal de Irrigagao de Vila Nova
de Milfontes, situado no Alentejo de Portugal, o qual encontra-se inserido no Projeto
Orchestra, financiado pela Fundagao pela Ciéncia e Tecnologia, que visa a criagdo de

tecnologias e desenvolvimentos para o setor de irrigacdo de Portugal.

1.1 Motivagao

O uso de agua pela populacdo em geral é um dos grandes questionamentos da
atualidade, dada a aceitagao de que a propriedade renovavel da agua depende do modo como
nds a usamos.

Neste fato, o uso consciente deste recurso é uma das prioridades mundiais.
Inseridos neste contexto, os canais de irrigagdo sao uma construgao vital para a vida humana,
bem como uma das zonas de maior utilizacdo dos recursos hidricos.

Este estudo tem, em esséncia, a vontade de mostrar que as novas tecnologias
podem ser aplicadas para ganhos reais nestes sistemas, apresentando métodos modernos
para se conseguir um controle adequado dos recursos hidricos e, aos poucos, colaborar com
a conservacao de mananciais.

Além disso, apesar de estar inserido em um caso especificamente do espaco
portugués, dado que a fonte de estudo é o Canal de Rega de Vila Nova de Milfontes, todo e
qualquer sistema de transporte de dgua e fluidos pode-se valer dos resultados, inserindo-se
no Brasil no caso da transposicao do Rio Sdo Francisco, no Nordeste, bem como no caso mais

recente das barragens de detritos de mineradoras, em Minas Gerais.

1.2 Metodologia

Todo o desenvolvimento do controlador neural deu-se em ambientes virtuais de
MatLab e Simulink, baseando-se no simulador do Canal de Rega de Vila Nova de Milfontes,

realizado por Nabais (2011) sob a guarda do Projeto Orchestra.



A principio, o estudo baseia-se no trabalho de Simacek (2015), onde foram
exemplificadas arquiteturas de controle usuais e proposta uma metodologia de avaliagdo
destes sistemas de controle, também baseados no simulador de Nabais (2011) do Canal de
Rega de Vila Nova de Milfontes.

A partir deste estudo, definiu-se as varidveis e dados a serem utilizados no
decorrer de todo o estudo. Para a definicdo do modelo de redes neurais a serem utilizados,
estudou-se os trabalhos de Hayjin (2001), Ferrari (2010), Hassan e Kothapalli (2010), Shu e Pi
(2000) e o livro Neural Network Applications in Control, de Irwin, Warwick e Hunt (1995),
estudos os quais exemplificam os diversos modelos de redes em funcionamento,
principalmente em comparagao aos controles proporcionais-integrais, foco do estudo.

Também foram realizados estudos nos trabalhos de Bohn e Atherton (1998),
Ghoshal e John (2010) e Li, Park e Shin (2007), para uma melhor andlise sobre a
implementacdo de um sistema de Anti Wind Up no controlador neural.

O estudo de Nabais, Mendonca e Botto (2013) também foi utilizado para
entendimento do sistema em caso de falhas.

Por fim, houve uso constante da internet, em especial o site MathWorks, para
avaliacdo dos métodos computacionais utilizados pelo MatLab e Simulink, que envolvem o

treinamento e adaptacdo das redes neurais artificiais estabelecidas.

1.3 Descrigao sumaria do trabalho

Este estudo teve por objetivos a comprovacdo da eficiéncia da metodologia
proposta de integracdo de arquiteturas de controle usualmente aplicadas no controle dos
niveis de um canal de irrigagao por meio de redes neurais artificiais.

Com base em no canal de irrigacdo de Vila Nova de Milfontes, situado no Alentejo
portugués, simulado em ambiente virtual do Simulink criado por Jodo Nabais, e no estudo das
arquiteturas de Controle Local a Jusante (CLJ) e Controle Distante a Montante (CDM), bem
como no benchmark de testes estabelecido por Simacek (2015), definiu-se os dados a serem

usados para o treinamento da rede neural.



Segundo os estudos realizados por Haykin (2001), Ferrari (2010) e Hassan e

Kothapalli (2010), definiu-se o modelo de rede neural a ser utilizado para o modelamento dos

controles proporcional-integral a serem retratados.

Apds as primeiras iteragoes de treinamento, efetivou-se um estudo minucioso dos

valores de bias e pesos nas redes criadas afim de entender como o sistema estava a ser

modelado e, com isso, definiu-se a taxa de aprendizagem do processo de adaptacdo das redes.

Por fim, com todos os parametros definidos, efetuaram-se os treinamentos e

adaptacgGes necessarias para o correto funcionamento do controlador neural final, o qual foi

avaliado segundo o benchmark proposto por Simacek (2015) e comparado com os

controladores por esse ja testados na dissertacao.

Este documento encontra-se dividido em 5 capitulos, a saber:

Capitulo 1: Apresenta-se o trabalho, sua proposta e definicdo geral da
metodologia aplicada.

Capitulo 2: Revisita a teoria das redes neurais, bem como apresenta as
ferramentas e teorias utilizadas para a obtengao dos resultados.

Capitulo 3: ExpOe o processo de criagdo do controlador neural, bem como
todas as nuangas que envolveram seu projeto.

Capitulo 4: Os resultados do desempenho do controlador, bem como sua
comparagcdo com as arquiteturas as quais foi baseado, sdo apresentados e
discutidos nesta parte.

Capitulo 5: Apresentam-se a conclusdo e as consideragdes finais acerca do

trabalho realizado.



2 Fundamentacao tedrica

Neste capitulo, serdo discutidas as duas premissas basicas para este estudo: as
teorias acerca de redes neurais, desde sua base até sua aplicacdo em sistemas de controle,
bem como suas varidveis de implementacao, i.e., fun¢des de treinamento, selecdo de dados,
parametros internos, etc.; o simulador ao qual serd implementado o controlador
desenvolvido, bem como a sua avaliagdo e comparacdao com as arquiteturas inspiradoras do

controlador.

2.1 Redes neurais

O conceito por de tras da teoria de redes neurais artificiais (RNA) é inspirado na
célula base do cérebro humano, o neurénio. O poder de processamento do cérebro ainda ndo
é equiparavel por nenhuma tecnologia ou teoria, contudo, o entendimento de seu
funcionamento vem sendo reaplicado nesta area.

A rede neural, assim sendo, pode ser entendida como um grupo de neurdnios
interligados que, a partir de um dado estimulo, executam uma tarefa previamente
programada.

Tais redes assimilaram duas caracteristicas cerebrais: o conhecimento adquirido
vem do ambiente ao qual ela se insere, através de um processo de aprendizagem; o método
de armazenagem de aprendizado, chamados de pesos sinapticos (Haykin, 2001).

A célula base de uma RNA, o neurdnio, pode ser parametrizado por trés varidveis:
o peso de cada entrada, o Bias, e a funcao de ativacao.

Segundo o modelo:

Bias

- b
ro—s{Wy
O_\ T Fungdo de
X a-»@—\‘\} ,,{‘\ : ativagdo
i b \ v Saida

3 ¢
Sinais de | "_5’ ()
entrada / Y

—_— ]
/ Somatorio
/

oel@/
.

Pesos

Figura 1: Modelo de neurénio (Haykin, 2001)



Ou, expresso em modelamento matematico:

U = Z Wi jX; (D
=1

U = U + by (2)

Vi = @) 3)

Onde x; representa os sinais de entrada, wy o peso de cada entrada para o
neurdnio k, ux é a somatéria das entradas ponderadas, bk é o bias, parametro intrinseco do
neurdnio k, vk é o potencial de ativacdo do neurdnio k, ¢ é a funcdo de ativacdo e yk é a saida
do neurénio k (Haykin, 2001).

Assim sendo, uma RNA genérica pode ser representada pelo seguinte diagrama:

Pesos Neurdnios

de saida

Entradas Saidas

Neurodnios
intermediarios

Figura 2: Rede Neural Multicamadas genérica (MLP) (Haykin, 2001)

Um sistema gerido por uma rede neural consegue, assim, generalizar o
conhecimento, seja ele proveniente de um ambiente fisico linear ou ndo, tendo seu
aprendizado baseado em um conjunto de dados oriundos do sistema a ser representado, o
gue também prové a capacidade adaptativa de tais sistemas.

Portanto, para o desenvolvimento de uma RNA, deve-se determinar sua forma, ou

seja, o numero de entradas, o nUmero de saidas (onde o nimero de neurdnios na camada de

6



saida da rede serd de mesmo nuimero), a quantidade de camadas intermediarias (bem como

o numero de neurdnios em cada uma) e a funcdo de ativacao.

2.2.1 FungOes de ativagao

A funcdo responsavel pela saida de um dado neurbnio pode assumir muitas
formas, mas, em geral, apresenta trés formas bdasicas (Haykin, 2001) que, apesar de
contemplarem grande para da gama de aplicacBes, podem ser modificadas as necessidades

do sistema.

A primeira forma, a Fun¢éo Limiar, é dada por:

1+ plo)

Figura 3: Fung¢do de Ativagdo Limiar (Haykin, 2001)

A segunda forma, a Fungdo Linear por Partes, que é dada por:

1.2

] -
(o)
0.8} |

0.6 1
04 .
02F .

(-) 1 1 1
-2 -15 -1 -05 0 0.5 1 1.5 2

“
v

Figura 4: Fun¢do de Ativagdo Linear por Partes (Haykin, 2001)

Essa funcdo, em exemplo, serd usada de forma modificada na concepcao dos
controladores neurais a serem descritos no préximo capitulo, assumindo a forma dada pela

equagao:



p(v) =v (4)

E, por fim, a Fun¢do Sigmoide, a funcao mais aplicada em RNA, por apresentar uma
forma balanceada entre o comportamento linear e ndo-linear, sendo ela dada por funcdes

hiperbdlicas e logaritmicas com uma variavel a, dada por, em exemplo:

1.2

g
0.8
06
0.4

0.2

w(v)

L]

Aumentando

0
-0 -8 6 4 =2 0 2 - 6 8 10

Figura 5: Fun¢do de Ativagdo Sigmoide (Haykin, 2001)

2.2.2 Arquiteturas comuns

No que diz respeito a arquitetura de uma RNA, ou seja, a forma que levam suas
camadas internas e de saida, muitas teorizacdes e modelos sdo aplicados. Apesar da liberdade
do usuario de utilizar uma arquitetura de qualquer proveniéncia e concepg¢do, alguns casos
generalistas valem ser exemplificados.

Dentre as arquiteturas mais comuns, as redes Feedfoward sao tidas como a
arquitetura mais simples e, apesar disso, extremamente difundidas. Nestas redes, a saida de
um neuronio sempre segue em sentido positivo na rede, i.e., um dado sinal ndo realimenta,
em nenhum ponto, a rede neural, sempre sendo a saida dos neurénios de uma camada a
entrada dos neuronios da préxima camada interna.

Por fim, outra arquitetura usualmente usada, no qual se baseara o controlador a
ser definido, sdo as redes Feedback. Em tais redes, os neurbnios sdo realimentados com as
saidas da camada na qual se encontram.

Um exemplo desta arquitetura sdo as redes NARX (Nonlinear autorregressive with
exogenous input), onde as camadas internas sdo dadas como uma rede Feedfoward, mas as

entradas da rede contam com a realimentacao da saida.



As redes Feedfoward sdao normalmente usadas para sistemas com fung¢des nao-
diferenciais, enquanto as de Feedback sdo comumente usadas para séries e sistemas
diferenciais.

A figura a seguir exemplifica tais arquiteturas.
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Figura 6: (a) Rede Feedfoward (b) Rede Feedback (Haykin, 2001)

2.2.3 Aprendizagem e treinamento

No que diz respeito ao processo de aprendizagem, este pode ser dividido em duas
classes (Haykin, 2001), se o aprendizado é supervisionado ou ndo.

Quando supervisionado, os pesos sinapticos sdo ajustados conforme um padrdo
ou um conjunto-saida padronizado, onde o ajuste decorre da tentativa de se anular o erro
entre o resultado obtido a partir das entradas do exemplo e as saidas padronizadas.

J4 quando a aprendizagem ndo é supervisionada, o ajuste se da por regras e
propriedades determinadas no conjunto de dados.

A aprendizagem de uma RNA da-se pelo seu processo de treinamento, processo o
gual se da efetivamente o ajuste das varidveis livres da rede.

Em suma, pode-se dividir o treinamento em dois processos distintos.

O treinamento em batch, ou por lote, ajusta os pesos apds o processamento de
todos os dados de treinamento, ou seja, para cada espécime do treinamento, calcula-se o erro
perante a saida e, apds todo o processamento, faz-se o ajuste dos ganhos, definindo-se assim
uma iteracao.

Ja o treinamento online, ou sequencial, ajusta os pesos de forma continua apds

cada exemplo processado, até que o ultimo exemplo seja processado, o que define uma
9



iteragao. Ao tempo que este processo foi estipulado, os cientistas da area acreditavam que
obteriam resultados menos precisos com este treinamento, dada a possibilidade de que,
dentre um dado subconjunto amostral, o ajuste dos pesos pudesse reduzir o erro em uma
forma ndo natural e que, ao fim da iteracdo, o erro total fosse maior do que se processado em
batch, porém, apesar da falta de confirmacdes analiticas, este método mostra-se o mais eficaz
no treinamento de redes e, assim sendo, sera o foco neste estudo.

O principal algoritmo de treinamento sequencial é o algoritmo de
Retropropagacdo, onde o ajuste dos pesos da-se em dois processos sobre as camadas da rede
neural.

A primeira etapa, chamada de forward, ocorre no sentido positivo da rede, i.e., a
partir das entradas padronizadas define-se as saidas da rede, onde os pesos sdo mantidos
fixos. A segunda etapa, chamada de backward, os pesos sdo ajustados no sentido negativo da
rede, ou seja, da camada de saida até a primeira camada, segundo uma regra de aprendizagem
de correcdo dos erros.

Salienta-se que este serd o processo de aprendizagem e treinamento do foco de

estudo.

2.2 Simulagdo e avaliagdo

A proposta de estudo é baseada no simulador desenvolvido por Jodo Nabais do
Canal de Irrigacdo de Vila Nova de Milfontes, no ambito do Projeto Orchestra, em Simulink,
sendo este formulado sobre os principios definidos em Nabais et. al. (2011) e Litrico e Fromion
(2004).

O canal simulado consta com quatro segmentagdes interligadas sequencialmente,
gue serdo tratados por piscinas, sendo controladas as comportas a montante e a jusante de
cada uma. Cada piscina conta, ao seu longo, de alguns pontos de extracdo de agua
equidistantes entre si, sendo que cada piscina possui um nimero determinado de pontos de
tomada de agua, com valores nominais e maximos préprios de cada ponto.

Com isso, no total, sdo 29 pontos de extracdo no canal, 5 comportas controladas,
sendo uma de entrada do canal, uma de saida do canal, e 3 intermedidrias, que fazem a ligacao

entre as piscinas.
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As comportas simuladas sdo do tipo guilhotinas com sec¢do transversal
trapezoidal, igual a do canal, sendo sua componente de controle a altura da comporta, sendo
seus limites de acdo dados por 0, quando esta fechada, e pelo nivel a montante da comporta
como limite superior.

O simulador divide-se em duas estruturas principais: a estrutura e modelamento
do canal em si, parte majoritariamente provida do trabalho de Jodo Nabais: o controlador,
onde sera implementado o trabalho por este realizado e parte majoritariamente provida por
Simacek (2015), onde se buscou os dados a serem tratados neste trabalho.

Em Simacek (2015), propos-se dois sistemas de controladores proporcional-
integral (PI) em arquiteturas diferentes para se controlar o canal. Em ambas, o controlador
recebe o erro entre a referéncia e o nivel a ser controlado e a saida do controlador é a variacdo
da altura da comporta em relagao a altura em operagdao nominal.

O Controle Local a Jusante (CLJ), onde, para uma dada piscina do canal simulado,
o controle do nivel a jusante foi realizado localmente, pela comporta a jusante do canal.

Tal arquitetura é dada pelo diagrama a seguir.

Ref

" cl
é - €| Ref
é < €] Ref

Figura 7: Arquitetura de Controle Local a Jusante (Simacek, 2015)

A segunda arquitetura, o Controle Distante a Montante (CDM), onde o nivel a
jusante de uma dada piscina é controlado pela comporta a montante da mesma, distante do
nivel, o que acarreta em atrasos no sistema. Tal arquitetura é dada pela figura 8.

Tais estruturas, bem como os controladores desenvolvidos para o simulador do

canal em Simacek (2015) serdo utilizados como a base de dados para este trabalho.
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Figura 8: Arquitetura de Controle Distante a Montante (Simacek, 2015)

Para o processo de avaliagcdo do controlador desenvolvido, usar-se-a o benchmark
descrito a seguir, onde os testes baseiam-se no sequenciamento de variacdo das tomadas de
agua, sendo avaliados por trés indicadores, um indicador composto por dois parametros para
a eficiéncia técnica do sistema, um para a eficiéncia energética e outro para a eficiéncia de
consumo de agua (Simacek, 2015).

O indicador de Desvio do Nivel de Referéncia, para um sistema discreto, tem dois
indices que refletem o erro médio e o desvio padrdao da média para cada piscina do canal,

dados a seguir.

- —Z(Y;(k)) — Ref; (5)

mi

Y,(k) — 1, — Ref;)”
ey = Y((Yi(k) — nm, — Ref;)") ©

n—1

Onde nmirepresenta o erro médio da piscina i, N representa o desvio padrao da
média da piscina i, Yi(k) € o valor do nivel da piscina i no momento k, n é a quantidade de

intervalos avaliados e Ref; é o nivel de referéncia da piscina i.
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O indicador de Desvio de Consumo de Agua, avalia a relagdo entre o total de dgua
gue entra no sistema e o total de agua extraido com sistema nas condicdes de teste e nas

condicGes nominais, segundo a férmula a seguir.

fQin dt
fQouts dt

dt/
fQoutSnominal dt

Nda (7)

f Qinnominal

Onde nga representa o indice de consumo, Qi, representa a vazao de entrada de
agua no canal e Qouts € o fluxo total de 4gua extraido do canal.
O indicador de Consumo de Energia relaciona a movimentagdao média das

comportas segundo a férmula a seguir.

As; ;. (az; +
ne:ZZIS,] (a;; +9) ®)

Ng

Onde ne é o indice de consumo energético, As; é a variagdo da posicdo da
comporta i entre os instantes j e j+1, ajj representa a aceleragdo da comporta i no momento j,
g a aceleragdo gravitacional e ngo nimero de comportas avaliadas (Simacek, 2015).

O benchmark a ser utilizado prevé teste de tempo simulado de 24 horas, sendo a
primeira metade dedicada a perturbagado do sistema e a outra metade a retomada dos valores
nominais. Estipula-se, também, quatro cenarios para o sequenciamento de extracdo.

Cada cenadrio salienta duas varidveis quanto a sincronizacdo, uma quanto a
sincronizacdo das tomadas de agua ao longo de uma piscina, quanto na sincronizagdo entre
as piscinas.

No primeiro quesito, pondera-se entre as variagdes nas extragdes afim de se
somar as influéncias de cada uma, abrindo-as sequencialmente, chamada de Abertura
Sequencial, ou para se explorar o maximo de variagdes em um ponto, variando-as no mesmo
instante, chamado de Abertura Estatica.

Quanto a sincronizacdo das piscinas, vé-se duas possibilidades, igualmente acima

mostrado. A primeira, chamada de Influéncia Pontual Maxima, onde todas as piscinas sofrem
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suas perturbacdes em um dado instante, e a segunda, chamada de Influéncia Sequencial, onde

a perturbagao de uma piscina soma-se as perturbagdes das anteriores (Simacek, 2015).

A figura a seguir evidencia esses cenarios.

— —

B Acclo Sincronizada em todas as piscinas

| = |

L] 3 24

Accdo Sincronlzada na Plscina ] ™= Acclio Sincronizada na Plstlna 2 = Acclo Sincronizada na Plscina 3 s Accdio Sincronizada na Plscina 4

Acglo Estitica na Piscina 1 l Acgho Extdtica na Piscina 2 Begdo Estatica na Piscia 3 ! Accdo Estitica na Piscina 4

d)

Figura 9: Cendrios. a) SP, Abertura Sincronizada com Influéncia Pontual Mdxima, b) SS, Abertura Sincronizada com Influéncia
Sequencial, c) EP, Abertura Estdtica com Influéncia Pontual Mdxima, d) ES, Abertura Estdtica com Influéncia Sequencial

(Simacek, 2015)
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3 Desenvolvimento do controlador

Neste capitulo, serd abordado o desenvolvimento do controlador neural baseado
nas arquiteturas CLJ e CDM, desde seus requisitos, definicGes e processos até sua versao final

para este projeto.

3.1 Requisitos

Apesar de pouco restritivo, alguns conceitos e requisitos serdo impostos ao
controlador. Primeiramente, que o controle seja consistente para diversas perturbacdes,
mantendo a resposta ao tempo em uma simulagdo congruente com a teoria de controle
envolvida no processo.

Em segundo lugar, o controlador deve ser capaz de ter o tempo de assentamento
o0 menor possivel, sendo o limite superior de 10 horas no caso de maior extracdo de agua
possivel, para que este estabilize em cada etapa do processo de avaliacdo do benchmark.

Espera-se também minimizar ao maximo o sobressinal da planta para os casos de
maior variacdo das extracdes, contudo, serd considerado aceitavel sobressinais (quando o
simulador operar normalmente, ndo em casos de saturacdo) de 10%.

Sobretudo, dado que o sistema é considerado uma ponderacdo entre as duas
arquiteturas anteriormente citadas, espera-se que seu desempenho seja melhor do que o
limite inferior de desempenho das arquiteturas, i.e., a que apresente pior desempenho.

Assim sendo, espera-se valores menores no indicador de Desvio do Nivel de
Referéncia em comparacdao aos piores resultados obtidos pelas arquiteturas originais.
Contudo, os outros indices ndo serao critérios para rejeicdo do controlador dado que, sem
tratamento posterior do controlador desenvolvido, ha a possibilidade de o controlador
estabilizar-se em um novo ponto de funcionamento, dado o fato de, no sistema matematico,
termos menos varidveis controlaveis do que controladores, o que pode resultar em mais do
gue uma solucdo para o mesmo ponto de operacao.

Por estes conceitos, define-se os requisitos para o controlador.

15



3.2 Definicao de redes neurais

Para o desenvolvimento dos controladores neurais, inicialmente, buscou-se o
melhor modelamento de um controlador Pl genérico.

A funcdo que define um controlador Pl, no dominio do tempo, é dada a seguir.

t

uw() = Kye(t) + K, j e(t)dt )

0

Onde u é a saida do controlador, e é o erro entre a referéncia e a saida da planta,
Ko € 0 ganho proporcional e Ki é o ganho integral do controlador.
Reformulando a equac¢do para o caso de tempo discreto, temos a seguinte

expressao.

K
u(K) = Kye(K) + K; z Tse(n) 9
K-1
u(K) = Kye(K) + KiTse(K) + Z T,e(K) (10)
n=0

Estudando a composicdo da acdo de controle, nota-se, por o6bvio, uma
componente proveniente da componente proporcional (definida por P) e outra da

componente integral (definida por I). Assim sendo, temos.

w(K) = P(K) + I(K) (11)

P(K) = Kye(K) (12)
K

I(K) = K, Z T.e(n) = K;T,e(K) + I(K — 1) (13)
n=0
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Assim sendo, podemos reescrever a funcdo do controlador como dado a seguir.
u(K) = P(K) + K;T;e(K) + z71I(K) (14)

Tal expressdo pode ser traduzida em uma rede neural representada no diagrama

a seguir.

e(n)

e(n)

u(n

El

Figura 10: Estrutura neural de um controlador Pl (Adaptado Ferrari, 2010)

Esta rede neural é do tipo recursiva, com bias nulos e funcdo de ativacao linear tal
gual a Equacdo 4.

Assim sendo, a concepgao do controlador neural para o simulador do canal de
irrigacdo deve-se, antes, avaliar como a estrutura basica de controlador neural Pl descrita
acima ira agir para cada comporta.

Para o caso, em cada arquitetura, existem 4 comportas controladas e uma passiva,
ou seja, a comporta de entrada do canal s6 é modelada para controle no caso da arquitetura
CDM e a comporta de saida para o caso CLJ.

Tais comportas serdao modeladas, entdao, apenas com uma unidade basica neural
Pl, exatamente como na figura 10, ja que, para ambas, existe apenas um controlador para
base, com apenas uma entrada de erro.

Ja para as comportas intermediarias, que estdao presentes em ambas as
arquiteturas, analisou-se a relagao entre os ganhos dos controladores em CDM e CLJ e notou-

se a incidéncia de sinais opostos para as constantes de ganho.
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Tal diferenca vem do fato que, e.g., no caso de a referéncia ser maior que o nivel
em um dado instante, ou seja, o erro, que é dado pela diferenca entre o nivel e a referéncia,
€ negativo, mas a variagao da comporta em CDM deve ser positiva a fim de abrir mais a
comporta e, assim, aumentar o fluxo de dgua na entrada da piscina, enquanto no caso CLJ a
acao de controle deve ser negativa, assim como o erro, para diminuir a abertura da comporta
e diminuir o fluxo de saida do canal.

Usando-se deste fato, em um caso de a a¢do de controle final for resultado da
soma das acoes em CLJ e CDM, em algum dado momento, as componentes integrais de cada

parte da rede entrariam em sintonia, arquitetura a qual é representada no diagrama a seguir.

Figura 11: Arquitetura das redes neurais de controle das comportas internas do canal (Adaptado Ferrari, 2010)

Em um caso onde ambas as acbes tivessem o mesmo sinal, o mddulo da
componente final seria amplificado e, tomando-se precauc¢des para que ndo ultrapasse os
limites de estabilidade, teria um desempenho melhor. No caso onde as acGes de controle
primarias tivessem sinais o contrdrio, a sintonia faria que, em algum dado instante, as
componentes integrais anulassem a derivada temporal da saida do controlador, ou seja, os

erros e ganhos estariam em um estado onde a acdo de controle manter-se-ia a mesma.
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Tal fato acarretaria em certo retardo na execucdo das arquiteturas caso
comparadas separadamente com suas bases originais, mas, como os niveis envolvidos
também sofreriam com as influéncias da comporta anterior ou posterior, na mesma tentativa
de minimizar o erro, tal retardo ndo deve comprometer o funcionamento dos controladores,

apesar do cuidado na implementacdo a ser considerado.

3.3 O processo de treinamento

O processo principal para a criacdo da rede neural é o seu treinamento, onde,
enfim, suas variaveis de processo serao definidas e, assim, sendo capaz de funcionar como foi
designada.

Contudo, envolvendo duas arquiteturas ndo correlacionadas por modelos fisicos,
o treinamento seria, em suma, impossivel. Por impossivel entende-se que as relacdes
estabelecidas ndo seriam reais e, assim sendo, o processo do controlador seria erréneo.

Para o correto processo de controle, entdo, definiu-se um método de treinamento
onde os pesos fossem atualizados conforme séries de dados, sendo que cada série era
correlata a uma estrutura de controle PI, e sucessivas adaptacGes destes pesos afim de se
encontrar a melhor resposta.

Para os casos da comporta de entrada e para a comporta de saida, elas foram
treinadas conforme as arquiteturas as quais correspondem, como explicados anteriormente.
Para tal, utilizou-se séries de dados obtidas no controlador para casos onde os controladores
envolvidos ndo entrassem em saturacao, para evitar a perda de informacdo correlacionada ao
controlador.

Tal processo foi realizado como um simples treinamento e os resultados

comparados aos valores dos controladores originais.

Tabela 1: Valores originais dos controladores (Simacek, 2015) e os obtidos com o treinamento da rede neural

Original Neural
Comporta Kp Ki Kp Ki
1 -8,03E+00 | -5,32E-04 | -7,98E+00 | -5,38E-04
5 1,72E+02 | 2,23E+00 | 1,65E+02 | 2,35E+00
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Os valores amostrados mostram grande congruéncia com os valores tedricos, sob
os quais eles foram baseados, tanto para a comporta de entrada (comporta 1) e para a de
saida (comporta 5).

Para as comportas de 2 a 4, o processo de treinamento levou em conta duas
varidveis: o numero de adaptacdes a serem feitas; a taxa de aprendizado para cada adaptacao.

Adaptacdo é o modo pela qual a rede neural atualiza os valores dos seus ganhos
mesmo depois de treinada. Durante a adaptacdo, ocorre um novo treinamento sob as mesmas
premissas do treinamento original da rede, com uma nova fonte de dados, e os pesos sdo
atualizados segundo a taxa de aprendizado, sob a formula a seguir.

Wkj Novo = (1 - ta)ij original + taij Adaptagao (15)

Onde w s3o os valores do peso j novo, original e oriundo da adaptac¢do do neurdnio
k, e ta é a taxa de aprendizado.

Para um correto funcionamento do controlador, i.e., ndo haja sobrepujanca de
uma das arquiteturas perante a outra, prevé-se que a magnitude dos ganhos deve ser
proxima, ou seja, na mesma ordem de grandeza, tanto para o ganho integral quanto o
proporcional.

Logicamente, este fato deve ser verdadeiro, ja que, para perturbacdes
semelhantes, as partes do controlador neural devem apresentar respostas de mesma
magnitude, para que a a¢do de uma delas seja ofuscada pela do outro.

Assim sendo, estudou-se os ganhos dos controladores originais.

Tabela 2: Dados dos controladores originais (Simacek, 2015) e dados estatisticos.

Ccu CDM
Comporta Kp Ki Kp Ki Kp (CDM/CL)) | Ki(CDM/CL))
2 1,72E+02 | 2,25E+00 | -1,24E+00 | -1,35E-04 0,72% 0,01%
3 1,85E+02 | 2,40E+00 | -2,09E+00 | -1,25E-03 1,13% 0,05%
4 1,61E+02 | 2,10E+00 | -2,38E+00 | -2,27E-03 1,47% 0,11%
Médias 1,11% 0,06%
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Nota-se, assim, que os valores do ganho integral sdo da ordem de 2000 vezes
menor no CDM do que no CLJ, e de 100 vezes para o ganho proporcional. Por tanto, como a
acao de controle de uma parte depende apenas do fator integral quando o tempo tende ao
infinito e contando erro estacionario nulo, escolhemos, arbitrariamente, que a proporc¢ado da
forca de acdo CLJ deve ser 1000 vezes menor que a forca de acdo CDM.

Tal definicdo vem diferenca de grandeza entre os ganhos das arquiteturas e servira
para definir os parametros de treinamento.

Para o treinamento, foram considerados 66 testes nos controladores originais, que
foram realizados no estudo do benchmark proposto para avaliagdo (Simacek, 2015), sendo
este 33 em cada arquitetura, com padrdes de extracao diferentes.

Definiu-se que os valores iniciais dos pesos seriam os encontrados nos
controladores originais, como na tabela 2. Os testes aos quais a adaptagdo serd submetida
foram organizados em uma sequéncia de iteracdes, intercalando um teste CDM com um teste
CLJ (em situacdes semelhantes de simulacdo), com taxas de aprendizado iguais a 1-t, para o
caso CDM e t, para o caso CLJ. Os pesos a serem dados como estimativa inicial no processo de
adaptacdo serdo os obtidos como resultado na iteracdo anterior.

Ou seja, resume-se as iteragdes ao algoritmo abaixo.

if Teste(i) == CLJ
Net (i) = adapt(Net(i-1), Pesos(i-1), Qutputs(i), Inputs(i), ta)
el seif Teste(i) ==
Net (i) = adapt(Net(i-1), Pesos(i-1), Qutputs(i), Inputs(i), 1-ta)

end

Segundo estas iteracdes e, considerando a hipdtese de que o processo de
adaptacdo seja perfeito, ou seja, para um teste CLJ os valores da parte do controlador
responsavel por esta estrutura serdo idénticos aos valores originais e a outra parte tera ganhos
nulos, e vice-versa, temos que, para se reduzir os ganhos da parte CLJ em mil vezes e
praticamente manter os ganhos da parte CDM normais, deve se usar uma taxa de aprendizado

(ta) igual @ 0,001, como era esperado.
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Para o processo de treinamento especificado, entdo, criou-se a base neural para
os controladores a serem implementados no controlador que, segundo o esquema

apresentado na figura 11, apresenta os seguintes resultados:

Tabela 3: Pesos dos controladores neurais encontrados

Cu CDM
Comporta Kp Ki Kp Ki Kp (CDM/CLJ) | Ki(CDM/CL)
2 3,45E+00 | 4,59E-03 -2,58E+00 -4,40E-03 74,88% 95,94%
3 1,64E+01 2,25E-02 -4,22E+00 -3,26E-02 25,68% 144,70%
4 1,51E+01 2,05E-02 -4,86E+00 -6,95E-02 32,06% 339,85%
Médias 44,21% 193,50%

Como previsto, os ganhos apresentam grandezas proximas, estando prontos,

entdo, para implementacdo no simulador.

3.4 Implementacao no simulador

Para a implementacdo dos controladores neurais no simulador, notou-se a
necessidade da implementagao de um sistema de Anti-Wind Up, para melhor resposta do

tempo.

Para tal, adicionou-se uma entrada no controlador neural, cuja fungdo é:

Sat(K) = {O, sem saturagao
@ ~ le(K), com saturac¢io

(16)

E o diagrama do novo segmento de controlador neural é dado pela seguinte figura.

e(n)

Figura 12: Novo controlador neural com anti-wind up
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Desta forma, caso haja saturagao, a entrada na parte integral sera nula e, entao, o

efeito de Wind Up sera cortado.

3.5 Simulacao

Como descrito no capitulo 2, o sistema foi submetido ao benchmark proposto
(Simacek, 2015) a fim de comprovar sua eficiéncia perante aos controladores cldssicos
utilizados anteriormente.

Serdo realizados 33 testes, sendo um em condi¢cdes nominais, 16 em cenarios de
variacdo positivas na extracdo e outros 16 em situacdo inversa. Cada teste, ainda, estd

enguadrado em um dos 4 cendrios de extracdo anteriormente descritos.
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4 Resultados

Nesta seg¢dao serdao apresentados e discutidos os resultados dos controladores,
sejam eles a propria definicdo dos controladores, quanto aos resultados obtidos a partir da

simulagao do controlador neural em funcionamento.

4.1 Os controladores

Como evidenciado no capitulo anterior, os ganhos dos controladores neurais
apresentavam a mesma magnitude, como desejado. Contudo, os valores divergiam em
relacdo a proporgdo esperada, no caso das adaptacdes fossem perfeitas, como descrito
anteriormente.

Segundo a proposta, esperava-se, apesar da ciéncia de que ndo seria o ocorrido,
gue os ganhos da parte CLJ do controlador fossem decair em uma margem de 1000 vezes,
enguanto a parte do CDM fosse se manter basicamente igual.

Segundo a tabela a seguir, podemos ver como foi dada a variagdo nos

controladores.

Tabela 4: Variagdo dos pard@metros entre os originais e os treinados

CLuJ CDM
Comporta Kp Ki Kp Ki
2 2,01% 0,20% |208,56% | 3249,15%
3 8,88% 0,94% |201,96% | 2598,64%
4 9,40% 0,98% |204,34% | 3066,27%

Podemos notar que a queda nos parametros da parte CLJ do controlador neural
ndo foram tdo grandes como esperado, contudo, foi compensado pela variagdo positiva do
modulo dos ganhos da parte CDM.

Como o método de treinamento visa diminuir os erros entre a saida calculada e as
saidas reais impostas pela série de dados, ndo ha como prever como as iteracdes se dao,
contudo, estas sdo, de fato, solugdes sub-6timas para minimizar o erro entre a acdo do

controlador neural com as arquiteturas base segundo a proporg¢do dada.
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Nota-se que, como a piscinas 3 e 4 sao muito parecidas, os controladores neurais
de ambas, apesar de terem sido treinados separadamente, apresentam resultados
extremamente similares, tanto nos resultados absolutos expressos no capitulo anterior
guanto na varia¢do dos ganhos dos controladores base.

A comporta dois apresenta resultados mais dispares, pois, a piscina 1 e 2 sao muito
diferentes entre si, sendo ambas de extensdes maiores do que as demais piscinas, sendo
entdo creditado a isso o fato do treinamento ter ponderado os valores dos ganhos mais baixos

para este controlador.

4.2 Analise da resposta ao tempo

Nesta etapa do trabalho, evidenciar-se-a o teste no cenario SS sob o efeito de
maxima extragao possivel no canal, para analisar os efeitos dos controladores nos niveis

controlados bem como a presenca da agdo CLJ e CDM juntas no mesmo cenario.

Nivel a Jusante Altura das Comportas Fluxo de agua nas comportas e de entrada
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Figura 13: Resposta temporal ao ensaio SS em amplitude mdxima de extragdo

A resposta temporal no pior cenario possivel para o controlador apresenta
resultados adequados ao esperado.

Primeiramente, nota-se que a correcdo dos niveis foi escalonada, sendo o nivel da
piscina 4 o primeiro a ter seu nivel normalizado, como era de se esperar. Nota-se, também, o

comportamento CDM e CLJ sendo executados, segundo a ampliagdo a seguir.
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Figura 14: Detalhe da agéo CDM e CLJ nos controladores

No detalhe do grafico a direita, podemos notar que o controlador, em um primeiro
momento, tende a fechar a comporta, o que corresponde ao momento em que o nivel da
comporta a montante da comporta perde nivel, sendo, entdo, a parte CLJ do controlador
neural entrando em agao.

Em um segundo instante, a comporta abre-se novamente, em resposta ao
estimulo vindo do nivel a jusante desta, que também tem seu nivel diminuido, demonstrando
o efeito CDM do controlador neural.

Ainda mais, da-se a noc¢do da ressonancia explicitada anteriormente, pois a
comporta acaba por encontrar um ponto de equilibrio onde os dois niveis mantem-se
constantes, em uma ponderagdo com o controlador, até que o fluxo oriundo da entrada do
canal faca-se presente no nivel e, assim, o corrija.

Outro fato interessante, como visto na figura 13, o nivel das comportas ao fim da
simulagdo é maior do que ao inicio, apesar de estar em mesmas condi¢des de extragdo. Isso
se da gracas ao controlador da comporta de entrada do canal que, como o erro do nivel que
controla foi ajustado pela face CLJ do controlador neural da primeira comporta, acaba por
manter-se com o integrador carregado.

Isso também era esperado, dado o fato do sistema estar subdefinido, ou seja,

encontra-se com mais variaveis de controle do que variaveis a serem controladas.
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Tal fato deve degradar o resultado do indicador de consumo de agua, contudo,
por ndo ser o foco deste estudo, ndo se tentou instalar métodos de descarga do integrador do

controlador neural do fluxo de entrada.

4.3 Indicadores de desempenho
Nesta se¢ao serdo apresentados os indicadores de desempenho para o sistema

aqui desenvolvido, bem como a comparacdo para com os sistemas de controle base, avaliados

em outros trabalhos (Simacek, 2015).

4.3.1 Nag

O indicador de desvio no consumo de agua apresentou o seguinte resultado, para

cada teste.

Nad das Redes Naurais

o S

Had

[
Ampliuds de Exiragio

Figura 15: nqg para o controlador desenvolvido

Podemos notar que ndo hd grande variancia entre os diversos cenarios, mas, sim,
com a amplitude de extracdo, com desvio de consumo maximo de, aproximadamente, 12% e

minimo de 4%.
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Como era esperado, dado o ponto de equilibrio anémalo apresentado nas

repostas ao tempo, o desvio neste indicador é maior do que o encontrado nos sistemas base

deste.
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i w w v 7 w [ 3 2 T} E3 T [
ek

Figura 16: Resultados do n«q para as arquiteturas COM e CLJ (Simacek, 2015)

Os sistemas anteriores tiveram resultado muito favoravel, com desvio de

consumos de médulo menor a 1%.

Isto evidencia a necessidade de tratar o ponto de equilibrio do canal para o caso

do controlador neural.

43.2 Ne

Quando ao indice de consumo energético, esperava-se que o resultado fosse dado

entre os valores dos controladores originais, e isso se comprovou, conforme o grafico.
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Figura 17: ne para o controlador neural
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Para os casos onde ha excesso de agua no sistema (amplitude de extracdo
negativa), o consumo é menor do que o em caso de excesso, bem como nos controladores
originais. Nota-se, também, valores mais préximos do CLJ, contudo, ainda mais
especificamente no caso de excesso de agua, o consumo energético foi menor.

Todas essas evidéncias se comprovam segundo o grafico para comparagao a

seguir.

Figura 18: Resultados do n. para os controladores originais (Simacek, 2015)

O interessante deste resultado é a semelhanga em forma do grafico do sistema
neural com o sistema CDM, mas com os valores mais proximos ao CLJ, o que evidencia como

ambas arquiteturas tiveram sua importancia no desenvolvimento do controlador neural.

4.3.3NmeN;

Para os indicadores técnicos do sistema, a analise se baseia em dois aspectos: a
média do erro e o desvio padrdao. A parametro nm, representante do erro médio, ndo
representa o erro propriamente dito, mas sim se o controlador teve alguma tendéncia em seu
desenvolvimento, ou se o periodo de recuperacdo a condicdo normal deu-se de modo
semelhante ao inicio da perturbagao.

O parametro nr, que representa o desvio padrdo da média, este sim nos da valores
mais préprios sobre o erro, fornecendo o a média do médulo do erro, informagdao mais

palpavel para se entender a capacidade do controlador em controlar o nivel.
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Em todos os testes, a piscina 1 e 4 sdo as que apresentam os piores resultados,

sendo a 1 pela sua grande extensdo e, assim, maior necessidade de acdo do controlador, e a

para todas as piscinas.

piscina 4 por ser o fim da cadeia, o que acarreta em ser a primeira a sofrer com saturacao.
Assim sendo, os graficos a seguir mostram os resultados para o controlador neural
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Figura 20: nm e ny para a piscina 2 com controlador neural
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Figura 22: nm e ny para a piscina 4 com controlador neural

Como pode se evidenciar, todas as piscinas apresentam resultados variando

apenas com a amplitude de extracdo, e pouco se variando com o cenario de extracdo. Além
disso, nota-se que, apenas nos casos extremos de extragdo com amplitude positiva ha nm

muito diferente de zero, o que é causado pela saturacdo inferior do controlador ou pela acao

de ressonancia, como dito anteriormente, entre a parte CDM e CLJ do controlador neural.

A titulo de comparacao, serdo apresentados, a seguir, os graficos das piscinas 1 e

4 para os casos testados com os controladores originais.
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Figura 23: nm e n, para a piscina 4 com CLJ (Simacek, 2015)

O resultado da primeira piscina em CLJ] mostra valores extremamente pequenos,
mesmo de nm e Nr, 0 que é o padrdo para todas as piscinas, exceto a 4 que, como evidenciado,

encontra-se com valores muito dispares das demais, gracas a saturacdo que acontece no
controlador.

Ainda se nota a dependéncia do sistema em relacdo ao cenario de extracdo,

diferente do caso neural antes exemplificado. Por fim, os valores cenarios onde o controlador

neural tem nm préximos a zero, apresentam-se valores proximos aos dessa arquitetura.
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A seguir, os resultados para o caso CDM para as piscinas 1 e 4.
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Figura 25: nm e n, para a piscina 1 com CDM (Simacek, 2015)
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Figura 26: nm e n, para a piscina 4 com CDM (Simacek, 2015)
Pode-se notar maior semelhanca comportamental entre o CDM e o sistema com
o controlador neural, o que era esperado. Contudo, tal comportamento da-se mais

semelhante referente ao nm, ja quanto ao nr, o desempenho do controlador neural é maior,

com desvios menores, e sofre menos influéncia em casos de amplitude de extragao negativa.

33



Por fim, nota-se o que era esperado, que o controlador neural, apesar de uma
semelhanga maior com controlador CDM, seu desempenho da-se muito melhor, gracas a acao

em conjunta das arquiteturas em sua aplicagao.

4 .4 Discussao

Com os resultados aqui apresentados, mostrou-se o que era o objetivo dessa
monografia. O sistema com controladores neurais desenvolvidos, baseados nas duas
arquiteturas usuais concebidas com controladores Pl classicos, mostrou vantagens em cima
das duas arquiteturas.

Mostrou-se capaz de operar autonomamente, o que ndo era esperado pela
arquitetura CLJ, onde a entrada de fluxo de dgua no canal é tida como manual (Simacek, 2015).
Conseguiu resultados técnicos substancialmente melhores do que a arquitetura CDM, com
desvios padrdao da média menores.

Contudo, o controlador neural falha na fase a qual o sistema deve voltar ao estado
nominal de funcionamento, dado o fato do sistema ser superdefinido, sendo sua principal
falha em relagdo aos outros controladores.

Por fim, vale notar que o controlador neural tem uma semelhanca maior em
relacdo ao controlador CDM do que com o CLJ, como era esperado desde sua concepc¢ao, dado

o processo de treinamento desenvolvido.
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5 Conclus3ao

Com todas as evidéncias dadas, o objetivo desse trabalho da-se por conquistado,
tendo em vista que foi criado um controlador baseado em redes neurais, cujo treinamento foi
objetificado nos dados de duas arquiteturas de controle dispares, que conseguiu obter
desempenho superior as suas arquiteturas-mae.

Sendo pautada em nogdes de controle basico, calculo e na teoria de redes neurais,
o principal foco do trabalho foi o desenvolvimento do método pelo quais elas seriam
treinadas.

O treinamento diferenciado, baseado na adaptacdo sucessiva da rede com taxas
de aprendizagem diferentes de iteracdo para iteracdo, foi a base do sucesso da criacdo desse
sistema de controle.

Apesar do controlador neural ser superdefinido, o que acarreta em multiplas
solugdes para o caso nominal do problema, ele se mostrou extremamente eficiente em
relacdo as duas outras arquiteturas.

O consumo de agua, apesar de maior do que nas demais arquiteturas, pode ser
contornado com alguns adendos ao controlador da primeira comporta, o que ndo foi o foco
deste trabalho.

Por fim, o trabalho realizado da-se por finalizado em vista de ter atingido seus

objetivos.
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