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Resumo 

 

Os sistemas de controle atualmente empregados ao redor do mundo vem passando por um processo 

de diversificação e evolução com o surgimento de novas tecnologias e teorias, e.g., o controle 

moderno. A teoria de redes neurais é uma revolução em diversas áreas de conhecimento. Desde a 

identificação de sistemas, previsão de funções temporais até análises de correlação, esta teoria está 

se inserindo no cotidiano acadêmico e empresarial cada dia mais. Muito se tem usado este 

pensamento em controle, principalmente em controle adaptativo, e o uso de controladores neurais é 

onde se situa este trabalho. Baseando-se em um canal de irrigação e em suas arquiteturas habituais 

de controladores de nível, estipulou-se um sistema de controle neural que, treinado em ambas as 

arquiteturas habituais, apresentou peculiaridades de ambas as arquiteturas, bem como melhorias 

comprovadas dado o benchmark utilizado para sua avaliação. Este estudo confirma a capacidade das 

redes neurais de assimilar correlações não-explícitas de modo eficaz para o caso das arquiteturas 

usuais de controle em canais de irrigação. 

  

Palavras-chave: Sistemas de Transporte de Água, Redes Neurais, Controle Clássico, Canal de Irrigação, Controle 

Proporcional-Integral 

 

 

Abstract 

 

Control systems currently in use around the world has been undergoing a process of diversification 

and evolution with the emergence of new technologies and theories, e.g., the modern control. The 

theory of neural networks is a revolution in various fields of knowledge. From systems' identification, 

forecasting temporal functions until correlation analysis, this theory is entering the academic and 

business world every day. This thought is largely use in control, especially in adaptive control, and the 

use of neural controllers is the main approach of this work. Based on an irrigation channel and in their 

usual architectures of level controllers, it has set up a neural control system, trained on both the usual 

architectures, which presented peculiarities of both architectures, as well as proven improvements 

since the benchmark used for its evaluation. This study confirms the ability of neural networks to 

assimilate non-explicit correlations effectively to the case of the usual architectures of control in 

irrigation canals. 

 

Keywords: Water Transportation Systems, Neural Networks, Classic Controller, Irrigation Canal, Proportional-

Integral Control   
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1 Introdução 

 

O processo de renovação tecnológica, com o avanço da ciência e da globalização, 

um dos principais processos ocorrendo no mundo. Apesar de, historicamente, a tecnologia se 

renovar continuamente, desde a revolução industrial a taxa dessa renovação anda em passos 

largos e crescentes. 

Certas indústrias, entretanto, que outrora eram o berço das novas tecnologias, 

hoje estão emperradas no século passado. Um bom exemplo destes ramos são alguns 

sistemas de transportes de água. 

Ainda é notória a tecnologia romana na construção de seus imponentes 

aquedutos, inclusive, sendo ainda mais majestoso o fato de muitos destes ainda estarem em 

funcionamento. Por vezes a humanidade se fez reinar a natureza com eclusas, canais, 

transposições e, talvez, por tantos trunfos, houve medo de se deixar a glória do passado em 

nome do progresso. 

Em específico no caso de canais de irrigação, os quais foram vastamente 

implementados desde a Mesopotâmia, foram os responsáveis pela evolução humana, abrindo 

caminho para a conquista de zonas áridas e provendo maior capacidade da agricultura. 

Contudo, hoje no mundo ainda existem muitos canais de irrigação operando com 

processos antiquados de controle. Enquanto outros sistemas semelhantes evoluíram 

rapidamente, como o controle de eclusas e barragens, pouco se fez na irrigação. 

Apesar disso, graças ao pensamento em prol do meio ambiente, tais áreas da 

indústria começaram a investir na sua atualização tecnológica. O sensoriamento dos canais, 

bem como a capacidade de se controlar as comportas se fez necessidade e, ao notarem os 

ganhos que o sistema apresentava com tais implementações, a evolução começou a ser 

dispersada. 

Com base nesta premissa, este trabalho buscou evidenciar que mesmo teorias 

relativamente recentes para a indústria podem, neste momento, ter uma aplicação prática 

nos canais de irrigação. 

Utilizando-se de arquiteturas usualmente implementadas e de grande difusão, 

mesmo que definidas sobre preceitos básico de controle clássico, buscou-se encontrar um 
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controlador baseado em redes neurais que fosse capaz de representar melhoras substanciais 

a tais arquiteturas, utilizando apenas os dados gerados por elas. 

O caso de estudo ambienta-se em um simulador do Canal de Irrigação de Vila Nova 

de Milfontes, situado no Alentejo de Portugal, o qual encontra-se inserido no Projeto 

Orchestra, financiado pela Fundação pela Ciência e Tecnologia, que visa a criação de 

tecnologias e desenvolvimentos para o setor de irrigação de Portugal. 

 

1.1 Motivação 

 

O uso de água pela população em geral é um dos grandes questionamentos da 

atualidade, dada a aceitação de que a propriedade renovável da água depende do modo como 

nós a usamos. 

Neste fato, o uso consciente deste recurso é uma das prioridades mundiais. 

Inseridos neste contexto, os canais de irrigação são uma construção vital para a vida humana, 

bem como uma das zonas de maior utilização dos recursos hídricos. 

Este estudo tem, em essência, a vontade de mostrar que as novas tecnologias 

podem ser aplicadas para ganhos reais nestes sistemas, apresentando métodos modernos 

para se conseguir um controle adequado dos recursos hídricos e, aos poucos, colaborar com 

a conservação de mananciais. 

Além disso, apesar de estar inserido em um caso especificamente do espaço 

português, dado que a fonte de estudo é o Canal de Rega de Vila Nova de Milfontes, todo e 

qualquer sistema de transporte de água e fluidos pode-se valer dos resultados, inserindo-se 

no Brasil no caso da transposição do Rio São Francisco, no Nordeste, bem como no caso mais 

recente das barragens de detritos de mineradoras, em Minas Gerais. 

 

1.2 Metodologia 

 

Todo o desenvolvimento do controlador neural deu-se em ambientes virtuais de 

MatLab e Simulink, baseando-se no simulador do Canal de Rega de Vila Nova de Milfontes, 

realizado por Nabais (2011) sob a guarda do Projeto Orchestra. 
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A princípio, o estudo baseia-se no trabalho de Simacek (2015), onde foram 

exemplificadas arquiteturas de controle usuais e proposta uma metodologia de avaliação 

destes sistemas de controle, também baseados no simulador de Nabais (2011) do Canal de 

Rega de Vila Nova de Milfontes. 

A partir deste estudo, definiu-se as variáveis e dados a serem utilizados no 

decorrer de todo o estudo. Para a definição do modelo de redes neurais a serem utilizados, 

estudou-se os trabalhos de Hayjin (2001), Ferrari (2010), Hassan e Kothapalli (2010), Shu e Pi 

(2000) e o livro Neural Network Applications in Control, de Irwin, Warwick e Hunt (1995), 

estudos os quais exemplificam os diversos modelos de redes em funcionamento, 

principalmente em comparação aos controles proporcionais-integrais, foco do estudo. 

Também foram realizados estudos nos trabalhos de Bohn e Atherton (1998), 

Ghoshal e John (2010) e Li, Park e Shin (2007), para uma melhor análise sobre a 

implementação de um sistema de Anti Wind Up no controlador neural. 

O estudo de Nabais, Mendonça e Botto (2013) também foi utilizado para 

entendimento do sistema em caso de falhas. 

Por fim, houve uso constante da internet, em especial o site MathWorks, para 

avaliação dos métodos computacionais utilizados pelo MatLab e Simulink, que envolvem o 

treinamento e adaptação das redes neurais artificiais estabelecidas.  

 

1.3 Descrição sumária do trabalho 

 

Este estudo teve por objetivos a comprovação da eficiência da metodologia 

proposta de integração de arquiteturas de controle usualmente aplicadas no controle dos 

níveis de um canal de irrigação por meio de redes neurais artificiais. 

Com base em no canal de irrigação de Vila Nova de Milfontes, situado no Alentejo 

português, simulado em ambiente virtual do Simulink criado por João Nabais, e no estudo das 

arquiteturas de Controle Local a Jusante (CLJ) e Controle Distante a Montante (CDM), bem 

como no benchmark de testes estabelecido por Simacek (2015), definiu-se os dados a serem 

usados para o treinamento da rede neural. 
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Segundo os estudos realizados por Haykin (2001), Ferrari (2010) e Hassan e 

Kothapalli (2010), definiu-se o modelo de rede neural a ser utilizado para o modelamento dos 

controles proporcional-integral a serem retratados. 

Após as primeiras iterações de treinamento, efetivou-se um estudo minucioso dos 

valores de bias e pesos nas redes criadas afim de entender como o sistema estava a ser 

modelado e, com isso, definiu-se a taxa de aprendizagem do processo de adaptação das redes. 

Por fim, com todos os parâmetros definidos, efetuaram-se os treinamentos e 

adaptações necessárias para o correto funcionamento do controlador neural final, o qual foi 

avaliado segundo o benchmark proposto por Simacek (2015) e comparado com os 

controladores por esse já testados na dissertação. 

Este documento encontra-se dividido em 5 capítulos, a saber: 

• Capítulo 1: Apresenta-se o trabalho, sua proposta e definição geral da 

metodologia aplicada. 

• Capítulo 2: Revisita a teoria das redes neurais, bem como apresenta as 

ferramentas e teorias utilizadas para a obtenção dos resultados. 

• Capítulo 3: Expõe o processo de criação do controlador neural, bem como 

todas as nuanças que envolveram seu projeto.   

• Capítulo 4: Os resultados do desempenho do controlador, bem como sua 

comparação com as arquiteturas as quais foi baseado, são apresentados e 

discutidos nesta parte. 

• Capítulo 5: Apresentam-se a conclusão e as considerações finais acerca do 

trabalho realizado. 
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2 Fundamentação teórica 

 

Neste capítulo, serão discutidas as duas premissas básicas para este estudo: as 

teorias acerca de redes neurais, desde sua base até sua aplicação em sistemas de controle, 

bem como suas variáveis de implementação, i.e., funções de treinamento, seleção de dados, 

parâmetros internos, etc.; o simulador ao qual será implementado o controlador 

desenvolvido, bem como a sua avaliação e comparação com as arquiteturas inspiradoras do 

controlador. 

 

2.1 Redes neurais 

 

O conceito por de trás da teoria de redes neurais artificiais (RNA) é inspirado na 

célula base do cérebro humano, o neurônio. O poder de processamento do cérebro ainda não 

é equiparável por nenhuma tecnologia ou teoria, contudo, o entendimento de seu 

funcionamento vem sendo reaplicado nesta área. 

A rede neural, assim sendo, pode ser entendida como um grupo de neurônios 

interligados que, a partir de um dado estímulo, executam uma tarefa previamente 

programada. 

Tais redes assimilaram duas características cerebrais: o conhecimento adquirido 

vem do ambiente ao qual ela se insere, através de um processo de aprendizagem; o método 

de armazenagem de aprendizado, chamados de pesos sinápticos (Haykin, 2001). 

A célula base de uma RNA, o neurônio, pode ser parametrizado por três variáveis: 

o peso de cada entrada, o Bias, e a função de ativação. 

Segundo o modelo: 

Figura 1: Modelo de neurônio (Haykin, 2001) 
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Ou, expresso em modelamento matemático: 

 

�� �������
�
�	


																																																																						�1� 
 

�� � �� � ��																																																																									�2� 
 

�� � �����																																																																											�3� 
 

Onde xj representa os sinais de entrada, wkj o peso de cada entrada para o 

neurônio k, uk é a somatória das entradas ponderadas, bk é o bias, parâmetro intrínseco do 

neurônio k, vk é o potencial de ativação do neurônio k, ϕ é a função de ativação e yk é a saída 

do neurônio k (Haykin, 2001). 

Assim sendo, uma RNA genérica pode ser representada pelo seguinte diagrama: 

 

 

Um sistema gerido por uma rede neural consegue, assim, generalizar o 

conhecimento, seja ele proveniente de um ambiente físico linear ou não, tendo seu 

aprendizado baseado em um conjunto de dados oriundos do sistema a ser representado, o 

que também provê a capacidade adaptativa de tais sistemas. 

Portanto, para o desenvolvimento de uma RNA, deve-se determinar sua forma, ou 

seja, o número de entradas, o número de saídas (onde o número de neurônios na camada de 

Figura 2: Rede Neural Multicamadas genérica (MLP) (Haykin, 2001) 
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saída da rede será de mesmo número), a quantidade de camadas intermediárias (bem como 

o número de neurônios em cada uma) e a função de ativação. 

 

2.2.1 Funções de ativação 

 

A função responsável pela saída de um dado neurônio pode assumir muitas 

formas, mas, em geral, apresenta três formas básicas (Haykin, 2001) que, apesar de 

contemplarem grande para da gama de aplicações, podem ser modificadas às necessidades 

do sistema. 

A primeira forma, a Função Limiar, é dada por: 

 

A segunda forma, a Função Linear por Partes, que é dada por: 

 

Essa função, em exemplo, será usada de forma modificada na concepção dos 

controladores neurais a serem descritos no próximo capítulo, assumindo a forma dada pela 

equação: 

Figura 3: Função de Ativação Limiar (Haykin, 2001) 

Figura 4: Função de Ativação Linear por Partes (Haykin, 2001) 
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���� � �																																																																															�4� 
 

E, por fim, a Função Sigmoide, a função mais aplicada em RNA, por apresentar uma 

forma balanceada entre o comportamento linear e não-linear, sendo ela dada por funções 

hiperbólicas e logarítmicas com uma variável a, dada por, em exemplo: 

 

2.2.2 Arquiteturas comuns 

 

No que diz respeito a arquitetura de uma RNA, ou seja, a forma que levam suas 

camadas internas e de saída, muitas teorizações e modelos são aplicados. Apesar da liberdade 

do usuário de utilizar uma arquitetura de qualquer proveniência e concepção, alguns casos 

generalistas valem ser exemplificados. 

Dentre as arquiteturas mais comuns, as redes Feedfoward são tidas como a 

arquitetura mais simples e, apesar disso, extremamente difundidas. Nestas redes, a saída de 

um neurônio sempre segue em sentido positivo na rede, i.e., um dado sinal não realimenta, 

em nenhum ponto, a rede neural, sempre sendo a saída dos neurônios de uma camada a 

entrada dos neurônios da próxima camada interna. 

Por fim, outra arquitetura usualmente usada, no qual se baseará o controlador a 

ser definido, são as redes Feedback. Em tais redes, os neurônios são realimentados com as 

saídas da camada na qual se encontram. 

Um exemplo desta arquitetura são as redes NARX (Nonlinear autorregressive with 

exogenous input), onde as camadas internas são dadas como uma rede Feedfoward, mas as 

entradas da rede contam com a realimentação da saída. 

Figura 5: Função de Ativação Sigmoide (Haykin, 2001) 
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As redes Feedfoward são normalmente usadas para sistemas com funções não-

diferenciais, enquanto as de Feedback são comumente usadas para séries e sistemas 

diferenciais. 

A figura a seguir exemplifica tais arquiteturas. 

 

2.2.3 Aprendizagem e treinamento 

 

No que diz respeito ao processo de aprendizagem, este pode ser dividido em duas 

classes (Haykin, 2001), se o aprendizado é supervisionado ou não. 

Quando supervisionado, os pesos sinápticos são ajustados conforme um padrão 

ou um conjunto-saída padronizado, onde o ajuste decorre da tentativa de se anular o erro 

entre o resultado obtido a partir das entradas do exemplo e as saídas padronizadas. 

Já quando a aprendizagem não é supervisionada, o ajuste se dá por regras e 

propriedades determinadas no conjunto de dados. 

A aprendizagem de uma RNA dá-se pelo seu processo de treinamento, processo o 

qual se dá efetivamente o ajuste das variáveis livres da rede. 

Em suma, pode-se dividir o treinamento em dois processos distintos. 

O treinamento em batch, ou por lote, ajusta os pesos após o processamento de 

todos os dados de treinamento, ou seja, para cada espécime do treinamento, calcula-se o erro 

perante a saída e, após todo o processamento, faz-se o ajuste dos ganhos, definindo-se assim 

uma iteração. 

Já o treinamento online, ou sequencial, ajusta os pesos de forma contínua após 

cada exemplo processado, até que o último exemplo seja processado, o que define uma 

Figura 6: (a) Rede Feedfoward (b) Rede Feedback (Haykin, 2001) 
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iteração. Ao tempo que este processo foi estipulado, os cientistas da área acreditavam que 

obteriam resultados menos precisos com este treinamento, dada a possibilidade de que, 

dentre um dado subconjunto amostral, o ajuste dos pesos pudesse reduzir o erro em uma 

forma não natural e que, ao fim da iteração, o erro total fosse maior do que se processado em 

batch, porém, apesar da falta de confirmações analíticas, este método mostra-se o mais eficaz 

no treinamento de redes e, assim sendo, será o foco neste estudo. 

O principal algoritmo de treinamento sequencial é o algoritmo de 

Retropropagação, onde o ajuste dos pesos dá-se em dois processos sobre as camadas da rede 

neural. 

A primeira etapa, chamada de forward, ocorre no sentido positivo da rede, i.e., a 

partir das entradas padronizadas define-se as saídas da rede, onde os pesos são mantidos 

fixos. A segunda etapa, chamada de backward, os pesos são ajustados no sentido negativo da 

rede, ou seja, da camada de saída até a primeira camada, segundo uma regra de aprendizagem 

de correção dos erros. 

Salienta-se que este será o processo de aprendizagem e treinamento do foco de 

estudo. 

 

2.2 Simulação e avaliação 

 

A proposta de estudo é baseada no simulador desenvolvido por João Nabais do 

Canal de Irrigação de Vila Nova de Milfontes, no âmbito do Projeto Orchestra, em Simulink, 

sendo este formulado sobre os princípios definidos em Nabais et. al. (2011) e Litrico e Fromion 

(2004). 

O canal simulado consta com quatro segmentações interligadas sequencialmente, 

que serão tratados por piscinas, sendo controladas as comportas a montante e a jusante de 

cada uma. Cada piscina conta, ao seu longo, de alguns pontos de extração de água 

equidistantes entre si, sendo que cada piscina possui um número determinado de pontos de 

tomada de água, com valores nominais e máximos próprios de cada ponto. 

Com isso, no total, são 29 pontos de extração no canal, 5 comportas controladas, 

sendo uma de entrada do canal, uma de saída do canal, e 3 intermediárias, que fazem a ligação 

entre as piscinas. 
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As comportas simuladas são do tipo guilhotinas com secção transversal 

trapezoidal, igual à do canal, sendo sua componente de controle a altura da comporta, sendo 

seus limites de ação dados por 0, quando está fechada, e pelo nível a montante da comporta 

como limite superior. 

O simulador divide-se em duas estruturas principais: a estrutura e modelamento 

do canal em si, parte majoritariamente provida do trabalho de João Nabais: o controlador, 

onde será implementado o trabalho por este realizado e parte majoritariamente provida por 

Simacek (2015), onde se buscou os dados a serem tratados neste trabalho. 

Em Simacek (2015), propôs-se dois sistemas de controladores proporcional-

integral (PI) em arquiteturas diferentes para se controlar o canal. Em ambas, o controlador 

recebe o erro entre a referência e o nível a ser controlado e a saída do controlador é a variação 

da altura da comporta em relação a altura em operação nominal. 

O Controle Local a Jusante (CLJ), onde, para uma dada piscina do canal simulado, 

o controle do nível a jusante foi realizado localmente, pela comporta a jusante do canal. 

Tal arquitetura é dada pelo diagrama a seguir. 

 

A segunda arquitetura, o Controle Distante a Montante (CDM), onde o nível a 

jusante de uma dada piscina é controlado pela comporta a montante da mesma, distante do 

nível, o que acarreta em atrasos no sistema. Tal arquitetura é dada pela figura 8. 

Tais estruturas, bem como os controladores desenvolvidos para o simulador do 

canal em Simacek (2015) serão utilizados como a base de dados para este trabalho. 

 

Figura 7: Arquitetura de Controle Local a Jusante (Simacek, 2015) 
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Para o processo de avaliação do controlador desenvolvido, usar-se-á o benchmark 

descrito a seguir, onde os testes baseiam-se no sequenciamento de variação das tomadas de 

água, sendo avaliados por três indicadores, um indicador composto por dois parâmetros para 

a eficiência técnica do sistema, um para a eficiência energética e outro para a eficiência de 

consumo de água (Simacek, 2015). 

O indicador de Desvio do Nível de Referência, para um sistema discreto, tem dois 

índices que refletem o erro médio e o desvio padrão da média para cada piscina do canal, 

dados a seguir. 

					��� � ∑��������  !"#�																																																									�5� 
 

�%� � &∑�������  ���  !"#��
'��  1 																																															�6� 

 

Onde ηmi representa o erro médio da piscina i, ηri representa o desvio padrão da 

média da piscina i, Yi(k) é o valor do nível da piscina i no momento k, n é a quantidade de 

intervalos avaliados e Refi é o nível de referência da piscina i. 

Figura 8: Arquitetura de Controle Distante a Montante (Simacek, 2015) 
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O indicador de Desvio de Consumo de Água, avalia a relação entre o total de água 

que entra no sistema e o total de água extraído com sistema nas condições de teste e nas 

condições nominais, segundo a fórmula a seguir. 

 

�)* �  
+ ,�- ./

+ ,0123 ./4
+ ,�-567�589  ./

+ ,0123567�589  ./4
                                          �7� 

 

Onde ηda representa o índice de consumo, Qin representa a vazão de entrada de 

água no canal e Qouts é o fluxo total de água extraído do canal. 

O indicador de Consumo de Energia relaciona a movimentação média das 

comportas segundo a fórmula a seguir. 

 

�; =  ∑ ∑ |∆>�,�. �A�,� + B�|
�C

                                                        �8� 

 

Onde ηe é o índice de consumo energético, Δsij é a variação da posição da 

comporta i entre os instantes j e j+1, aij representa a aceleração da comporta i no momento j,  

g a aceleração gravitacional e ng o número de comportas avaliadas (Simacek, 2015). 

O benchmark a ser utilizado prevê teste de tempo simulado de 24 horas, sendo a 

primeira metade dedicada a perturbação do sistema e a outra metade a retomada dos valores 

nominais. Estipula-se, também, quatro cenários para o sequenciamento de extração. 

Cada cenário salienta duas variáveis quanto a sincronização, uma quanto a 

sincronização das tomadas de água ao longo de uma piscina, quanto na sincronização entre 

as piscinas. 

No primeiro quesito, pondera-se entre as variações nas extrações afim de se 

somar as influências de cada uma, abrindo-as sequencialmente, chamada de Abertura 

Sequencial, ou para se explorar o máximo de variações em um ponto, variando-as no mesmo 

instante, chamado de Abertura Estática. 

Quanto a sincronização das piscinas, vê-se duas possibilidades, igualmente acima 

mostrado. A primeira, chamada de Influência Pontual Máxima, onde todas as piscinas sofrem 
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suas perturbações em um dado instante, e a segunda, chamada de Influência Sequencial, onde 

a perturbação de uma piscina soma-se as perturbações das anteriores (Simacek, 2015). 

A figura a seguir evidencia esses cenários. 

 

 

  

Figura 9: Cenários. a) SP, Abertura Sincronizada com Influência Pontual Máxima, b) SS, Abertura Sincronizada com Influência 

Sequencial, c) EP, Abertura Estática com Influência Pontual Máxima, d) ES, Abertura Estática com Influência Sequencial 

(Simacek, 2015) 
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3 Desenvolvimento do controlador 

 

Neste capítulo, será abordado o desenvolvimento do controlador neural baseado 

nas arquiteturas CLJ e CDM, desde seus requisitos, definições e processos até sua versão final 

para este projeto. 

 

3.1 Requisitos 

 

Apesar de pouco restritivo, alguns conceitos e requisitos serão impostos ao 

controlador. Primeiramente, que o controle seja consistente para diversas perturbações, 

mantendo a resposta ao tempo em uma simulação congruente com a teoria de controle 

envolvida no processo. 

Em segundo lugar, o controlador deve ser capaz de ter o tempo de assentamento 

o menor possível, sendo o limite superior de 10 horas no caso de maior extração de água 

possível, para que este estabilize em cada etapa do processo de avaliação do benchmark. 

Espera-se também minimizar ao máximo o sobressinal da planta para os casos de 

maior variação das extrações, contudo, será considerado aceitável sobressinais (quando o 

simulador operar normalmente, não em casos de saturação) de 10%. 

Sobretudo, dado que o sistema é considerado uma ponderação entre as duas 

arquiteturas anteriormente citadas, espera-se que seu desempenho seja melhor do que o 

limite inferior de desempenho das arquiteturas, i.e., a que apresente pior desempenho. 

Assim sendo, espera-se valores menores no indicador de Desvio do Nível de 

Referência em comparação aos piores resultados obtidos pelas arquiteturas originais. 

Contudo, os outros índices não serão critérios para rejeição do controlador dado que, sem 

tratamento posterior do controlador desenvolvido, há a possibilidade de o controlador 

estabilizar-se em um novo ponto de funcionamento, dado o fato de, no sistema matemático, 

termos menos variáveis controláveis do que controladores, o que pode resultar em mais do 

que uma solução para o mesmo ponto de operação. 

Por estes conceitos, define-se os requisitos para o controlador. 
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3.2 Definição de redes neurais  

 

Para o desenvolvimento dos controladores neurais, inicialmente, buscou-se o 

melhor modelamento de um controlador PI genérico. 

A função que define um controlador PI, no domínio do tempo, é dada a seguir. 

 

��/� �  EF"�/� + E� G "�/�./
2

H
                                             �9� 

 

Onde u é a saída do controlador, e é o erro entre a referência e a saída da planta, 

Kp é o ganho proporcional e Ki é o ganho integral do controlador. 

Reformulando a equação para o caso de tempo discreto, temos a seguinte 

expressão. 

 

��E� =  EF"�E� + E� � J3"���
K

-	H
                                             �9� 

 

��E� =  EF"�E� + E�J3"�E� + � J3"�E�
KL


-	H
                                   �10� 

 

Estudando a composição da ação de controle, nota-se, por óbvio, uma 

componente proveniente da componente proporcional (definida por P) e outra da 

componente integral (definida por I). Assim sendo, temos. 

 

��E� =  N�E� + O�E�                                                              �11� 

 

N�E�  =  EF"�E�                                                                  �12� 

 

O�E� =  E� � J3"���
K

-	H
= E�J3"�E� + O�E − 1�                                      �13� 
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Assim sendo, podemos reescrever a função do controlador como dado a seguir. 

 

��E� � N�E� � E�J3"�E� � PL
O�E�                                      �14� 

 

Tal expressão pode ser traduzida em uma rede neural representada no diagrama 

a seguir. 

 

Esta rede neural é do tipo recursiva, com bias nulos e função de ativação linear tal 

qual a Equação 4. 

Assim sendo, a concepção do controlador neural para o simulador do canal de 

irrigação deve-se, antes, avaliar como a estrutura básica de controlador neural PI descrita 

acima irá agir para cada comporta. 

Para o caso, em cada arquitetura, existem 4 comportas controladas e uma passiva, 

ou seja, a comporta de entrada do canal só é modelada para controle no caso da arquitetura 

CDM e a comporta de saída para o caso CLJ. 

Tais comportas serão modeladas, então, apenas com uma unidade básica neural 

PI, exatamente como na figura 10, já que, para ambas, existe apenas um controlador para 

base, com apenas uma entrada de erro. 

Já para as comportas intermediárias, que estão presentes em ambas as 

arquiteturas, analisou-se a relação entre os ganhos dos controladores em CDM e CLJ e notou-

se a incidência de sinais opostos para as constantes de ganho. 

Figura 10: Estrutura neural de um controlador PI (Adaptado Ferrari, 2010) 
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Tal diferença vem do fato que, e.g., no caso de a referência ser maior que o nível 

em um dado instante, ou seja, o erro, que é dado pela diferença entre o nível e a referência, 

é negativo, mas a variação da comporta em CDM deve ser positiva a fim de abrir mais a 

comporta e, assim, aumentar o fluxo de água na entrada da piscina, enquanto no caso CLJ a 

ação de controle deve ser negativa, assim como o erro, para diminuir a abertura da comporta 

e diminuir o fluxo de saída do canal. 

Usando-se deste fato, em um caso de a ação de controle final for resultado da 

soma das ações em CLJ e CDM, em algum dado momento, as componentes integrais de cada 

parte da rede entrariam em sintonia, arquitetura a qual é representada no diagrama a seguir. 

 

Em um caso onde ambas as ações tivessem o mesmo sinal, o módulo da 

componente final seria amplificado e, tomando-se precauções para que não ultrapasse os 

limites de estabilidade, teria um desempenho melhor. No caso onde as ações de controle 

primárias tivessem sinais o contrário, a sintonia faria que, em algum dado instante, as 

componentes integrais anulassem a derivada temporal da saída do controlador, ou seja, os 

erros e ganhos estariam em um estado onde a ação de controle manter-se-ia a mesma. 

Figura 11: Arquitetura das redes neurais de controle das comportas internas do canal (Adaptado Ferrari, 2010) 
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Tal fato acarretaria em certo retardo na execução das arquiteturas caso 

comparadas separadamente com suas bases originais, mas, como os níveis envolvidos 

também sofreriam com as influências da comporta anterior ou posterior, na mesma tentativa 

de minimizar o erro, tal retardo não deve comprometer o funcionamento dos controladores, 

apesar do cuidado na implementação a ser considerado. 

 

3.3 O processo de treinamento 

 

O processo principal para a criação da rede neural é o seu treinamento, onde, 

enfim, suas variáveis de processo serão definidas e, assim, sendo capaz de funcionar como foi 

designada. 

Contudo, envolvendo duas arquiteturas não correlacionadas por modelos físicos, 

o treinamento seria, em suma, impossível. Por impossível entende-se que as relações 

estabelecidas não seriam reais e, assim sendo, o processo do controlador seria errôneo. 

Para o correto processo de controle, então, definiu-se um método de treinamento 

onde os pesos fossem atualizados conforme séries de dados, sendo que cada série era 

correlata a uma estrutura de controle PI, e sucessivas adaptações destes pesos afim de se 

encontrar a melhor resposta. 

Para os casos da comporta de entrada e para a comporta de saída, elas foram 

treinadas conforme as arquiteturas as quais correspondem, como explicados anteriormente. 

Para tal, utilizou-se séries de dados obtidas no controlador para casos onde os controladores 

envolvidos não entrassem em saturação, para evitar a perda de informação correlacionada ao 

controlador. 

Tal processo foi realizado como um simples treinamento e os resultados 

comparados aos valores dos controladores originais. 

 

Tabela 1: Valores originais dos controladores (Simacek, 2015) e os obtidos com o treinamento da rede neural 

 Original Neural 

Comporta Kp Ki Kp Ki 

1 -8,03E+00 -5,32E-04 -7,98E+00 -5,38E-04 

5 1,72E+02 2,23E+00 1,65E+02 2,35E+00 
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Os valores amostrados mostram grande congruência com os valores teóricos, sob 

os quais eles foram baseados, tanto para a comporta de entrada (comporta 1) e para a de 

saída (comporta 5). 

Para as comportas de 2 a 4, o processo de treinamento levou em conta duas 

variáveis: o número de adaptações a serem feitas; a taxa de aprendizado para cada adaptação. 

Adaptação é o modo pela qual a rede neural atualiza os valores dos seus ganhos 

mesmo depois de treinada. Durante a adaptação, ocorre um novo treinamento sob as mesmas 

premissas do treinamento original da rede, com uma nova fonte de dados, e os pesos são 

atualizados segundo a taxa de aprendizado, sob a fórmula a seguir. 

 

��� Q0R0 = �1 − /*���� S%�C�-*T +  /*��� U)*F2*çã0                          �15� 

 

Onde w são os valores do peso j novo, original e oriundo da adaptação do neurônio 

k, e ta é a taxa de aprendizado. 

Para um correto funcionamento do controlador, i.e., não haja sobrepujança de 

uma das arquiteturas perante a outra, prevê-se que a magnitude dos ganhos deve ser 

próxima, ou seja, na mesma ordem de grandeza, tanto para o ganho integral quanto o 

proporcional. 

Logicamente, este fato deve ser verdadeiro, já que, para perturbações 

semelhantes, as partes do controlador neural devem apresentar respostas de mesma 

magnitude, para que a ação de uma delas seja ofuscada pela do outro. 

Assim sendo, estudou-se os ganhos dos controladores originais. 

 

Tabela 2: Dados dos controladores originais (Simacek, 2015) e dados estatísticos. 

 CLJ CDM   

Comporta Kp Ki Kp Ki Kp (CDM/CLJ) Ki (CDM/CLJ) 

2 1,72E+02 2,25E+00 -1,24E+00 -1,35E-04 0,72% 0,01% 

3 1,85E+02 2,40E+00 -2,09E+00 -1,25E-03 1,13% 0,05% 

4 1,61E+02 2,10E+00 -2,38E+00 -2,27E-03 1,47% 0,11% 

    Médias 1,11% 0,06% 
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Nota-se, assim, que os valores do ganho integral são da ordem de 2000 vezes 

menor no CDM do que no CLJ, e de 100 vezes para o ganho proporcional. Por tanto, como a 

ação de controle de uma parte depende apenas do fator integral quando o tempo tende ao 

infinito e contando erro estacionário nulo, escolhemos, arbitrariamente, que a proporção da 

força de ação CLJ deve ser 1000 vezes menor que a força de ação CDM. 

Tal definição vem diferença de grandeza entre os ganhos das arquiteturas e servirá 

para definir os parâmetros de treinamento. 

Para o treinamento, foram considerados 66 testes nos controladores originais, que 

foram realizados no estudo do benchmark proposto para avaliação (Simacek, 2015), sendo 

este 33 em cada arquitetura, com padrões de extração diferentes. 

Definiu-se que os valores iniciais dos pesos seriam os encontrados nos 

controladores originais, como na tabela 2. Os testes aos quais a adaptação será submetida 

foram organizados em uma sequência de iterações, intercalando um teste CDM com um teste 

CLJ (em situações semelhantes de simulação), com taxas de aprendizado iguais a 1-ta para o 

caso CDM e ta para o caso CLJ. Os pesos a serem dados como estimativa inicial no processo de 

adaptação serão os obtidos como resultado na iteração anterior. 

Ou seja, resume-se as iterações ao algoritmo abaixo. 

 

if Teste(i) == CLJ 
 

Net(i) = adapt(Net(i-1), Pesos(i-1), Outputs(i), Inputs(i), ta) 
 
elseif Teste(i) == CDM 
 

Net(i) = adapt(Net(i-1), Pesos(i-1), Outputs(i), Inputs(i), 1-ta) 
 
end 

 

Segundo estas iterações e, considerando a hipótese de que o processo de 

adaptação seja perfeito, ou seja, para um teste CLJ os valores da parte do controlador 

responsável por esta estrutura serão idênticos aos valores originais e a outra parte terá ganhos 

nulos, e vice-versa, temos que, para se reduzir os ganhos da parte CLJ em mil vezes e 

praticamente manter os ganhos da parte CDM normais, deve se usar uma taxa de aprendizado 

(ta) igual a 0,001, como era esperado. 
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Para o processo de treinamento especificado, então, criou-se a base neural para 

os controladores a serem implementados no controlador que, segundo o esquema 

apresentado na figura 11, apresenta os seguintes resultados: 

 

Tabela 3: Pesos dos controladores neurais encontrados 

 CLJ CDM   

Comporta Kp Ki Kp Ki Kp (CDM/CLJ) Ki (CDM/CLJ) 

2 3,45E+00 4,59E-03 -2,58E+00 -4,40E-03 74,88% 95,94% 

3 1,64E+01 2,25E-02 -4,22E+00 -3,26E-02 25,68% 144,70% 

4 1,51E+01 2,05E-02 -4,86E+00 -6,95E-02 32,06% 339,85% 

    Médias 44,21% 193,50% 

 

 

Como previsto, os ganhos apresentam grandezas próximas, estando prontos, 

então, para implementação no simulador. 

 

3.4 Implementação no simulador 

 

Para a implementação dos controladores neurais no simulador, notou-se a 

necessidade da implementação de um sistema de Anti-Wind Up, para melhor resposta do 

tempo. 

Para tal, adicionou-se uma entrada no controlador neural, cuja função é: 

 

XA/�E� � Y0,                >"Z >A/�[Açã\
"�E�, ]\Z >A/�[Açã\                                        �16� 

 

E o diagrama do novo segmento de controlador neural é dado pela seguinte figura. 

Figura 12: Novo controlador neural com anti-wind up 
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Desta forma, caso haja saturação, a entrada na parte integral será nula e, então, o 

efeito de Wind Up será cortado. 

 

3.5 Simulação 

 

Como descrito no capítulo 2, o sistema foi submetido ao benchmark proposto 

(Simacek, 2015) a fim de comprovar sua eficiência perante aos controladores clássicos 

utilizados anteriormente. 

Serão realizados 33 testes, sendo um em condições nominais, 16 em cenários de 

variação positivas na extração e outros 16 em situação inversa. Cada teste, ainda, está 

enquadrado em um dos 4 cenários de extração anteriormente descritos.  
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4 Resultados 

 

Nesta seção serão apresentados e discutidos os resultados dos controladores, 

sejam eles a própria definição dos controladores, quanto aos resultados obtidos a partir da 

simulação do controlador neural em funcionamento. 

 

4.1 Os controladores 

 

Como evidenciado no capítulo anterior, os ganhos dos controladores neurais 

apresentavam a mesma magnitude, como desejado. Contudo, os valores divergiam em 

relação à proporção esperada, no caso das adaptações fossem perfeitas, como descrito 

anteriormente. 

Segundo a proposta, esperava-se, apesar da ciência de que não seria o ocorrido, 

que os ganhos da parte CLJ do controlador fossem decair em uma margem de 1000 vezes, 

enquanto a parte do CDM fosse se manter basicamente igual. 

Segundo a tabela a seguir, podemos ver como foi dada a variação nos 

controladores. 

 

Tabela 4: Variação dos parâmetros entre os originais e os treinados 

 CLJ CDM 

Comporta Kp Ki Kp Ki 

2 2,01% 0,20% 208,56% 3249,15% 

3 8,88% 0,94% 201,96% 2598,64% 

4 9,40% 0,98% 204,34% 3066,27% 

 

Podemos notar que a queda nos parâmetros da parte CLJ do controlador neural 

não foram tão grandes como esperado, contudo, foi compensado pela variação positiva do 

módulo dos ganhos da parte CDM. 

Como o método de treinamento visa diminuir os erros entre a saída calculada e as 

saídas reais impostas pela série de dados, não há como prever como as iterações se dão, 

contudo, estas são, de fato, soluções sub-ótimas para minimizar o erro entre a ação do 

controlador neural com as arquiteturas base segundo a proporção dada. 



25 
 

Nota-se que, como a piscinas 3 e 4 são muito parecidas, os controladores neurais 

de ambas, apesar de terem sido treinados separadamente, apresentam resultados 

extremamente similares, tanto nos resultados absolutos expressos no capítulo anterior 

quanto na variação dos ganhos dos controladores base. 

A comporta dois apresenta resultados mais dispares, pois, a piscina 1 e 2 são muito 

diferentes entre si, sendo ambas de extensões maiores do que as demais piscinas, sendo 

então creditado a isso o fato do treinamento ter ponderado os valores dos ganhos mais baixos 

para este controlador. 

 

4.2 Análise da resposta ao tempo 

 

Nesta etapa do trabalho, evidenciar-se-á o teste no cenário SS sob o efeito de 

máxima extração possível no canal, para analisar os efeitos dos controladores nos níveis 

controlados bem como a presença da ação CLJ e CDM juntas no mesmo cenário. 

 

A resposta temporal no pior cenário possível para o controlador apresenta 

resultados adequados ao esperado. 

Primeiramente, nota-se que a correção dos níveis foi escalonada, sendo o nível da 

piscina 4 o primeiro a ter seu nível normalizado, como era de se esperar. Nota-se, também, o 

comportamento CDM e CLJ sendo executados, segundo a ampliação a seguir. 

Figura 13: Resposta temporal ao ensaio SS em amplitude máxima de extração 
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No detalhe do gráfico a direita, podemos notar que o controlador, em um primeiro 

momento, tende a fechar a comporta, o que corresponde ao momento em que o nível da 

comporta a montante da comporta perde nível, sendo, então, a parte CLJ do controlador 

neural entrando em ação. 

Em um segundo instante, a comporta abre-se novamente, em resposta ao 

estímulo vindo do nível a jusante desta, que também tem seu nível diminuído, demonstrando 

o efeito CDM do controlador neural. 

Ainda mais, dá-se a noção da ressonância explicitada anteriormente, pois a 

comporta acaba por encontrar um ponto de equilíbrio onde os dois níveis mantem-se 

constantes, em uma ponderação com o controlador, até que o fluxo oriundo da entrada do 

canal faça-se presente no nível e, assim, o corrija. 

Outro fato interessante, como visto na figura 13, o nível das comportas ao fim da 

simulação é maior do que ao início, apesar de estar em mesmas condições de extração. Isso 

se dá graças ao controlador da comporta de entrada do canal que, como o erro do nível que 

controla foi ajustado pela face CLJ do controlador neural da primeira comporta, acaba por 

manter-se com o integrador carregado. 

Isso também era esperado, dado o fato do sistema estar subdefinido, ou seja, 

encontra-se com mais variáveis de controle do que variáveis a serem controladas. 

Figura 14: Detalhe da ação CDM e CLJ nos controladores 
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Tal fato deve degradar o resultado do indicador de consumo de água, contudo, 

por não ser o foco deste estudo, não se tentou instalar métodos de descarga do integrador do 

controlador neural do fluxo de entrada. 

 

4.3 Indicadores de desempenho 

 

Nesta seção serão apresentados os indicadores de desempenho para o sistema 

aqui desenvolvido, bem como a comparação para com os sistemas de controle base, avaliados 

em outros trabalhos (Simacek, 2015). 

 

4.3.1 ηad 

 

O indicador de desvio no consumo de água apresentou o seguinte resultado, para 

cada teste. 

 

 

Podemos notar que não há grande variância entre os diversos cenários, mas, sim, 

com a amplitude de extração, com desvio de consumo máximo de, aproximadamente, 12% e 

mínimo de 4%. 

Figura 15: ηad para o controlador desenvolvido 
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Como era esperado, dado o ponto de equilíbrio anômalo apresentado nas 

repostas ao tempo, o desvio neste indicador é maior do que o encontrado nos sistemas base 

deste. 

 

Os sistemas anteriores tiveram resultado muito favorável, com desvio de 

consumos de módulo menor a 1%. 

Isto evidencia a necessidade de tratar o ponto de equilíbrio do canal para o caso 

do controlador neural. 

 

4.3.2 ηe 

 

Quando ao índice de consumo energético, esperava-se que o resultado fosse dado 

entre os valores dos controladores originais, e isso se comprovou, conforme o gráfico. 

Figura 16: Resultados do ηad para as arquiteturas CDM e CLJ (Simacek, 2015) 

Figura 17: ηe para o controlador neural 



29 
 

Para os casos onde há excesso de água no sistema (amplitude de extração 

negativa), o consumo é menor do que o em caso de excesso, bem como nos controladores 

originais. Nota-se, também, valores mais próximos do CLJ, contudo, ainda mais 

especificamente no caso de excesso de água, o consumo energético foi menor. 

Todas essas evidências se comprovam segundo o gráfico para comparação a 

seguir. 

 

O interessante deste resultado é a semelhança em forma do gráfico do sistema 

neural com o sistema CDM, mas com os valores mais próximos ao CLJ, o que evidencia como 

ambas arquiteturas tiveram sua importância no desenvolvimento do controlador neural. 

 

4.3.3 Nm e Nr 

 

Para os indicadores técnicos do sistema, a análise se baseia em dois aspectos: a 

média do erro e o desvio padrão. A parâmetro ηm, representante do erro médio, não 

representa o erro propriamente dito, mas sim se o controlador teve alguma tendência em seu 

desenvolvimento, ou se o período de recuperação à condição normal deu-se de modo 

semelhante ao início da perturbação. 

O parâmetro ηr, que representa o desvio padrão da média, este sim nos dá valores 

mais próprios sobre o erro, fornecendo o a média do módulo do erro, informação mais 

palpável para se entender a capacidade do controlador em controlar o nível. 

Figura 18: Resultados do ηe para os controladores originais (Simacek, 2015) 
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Em todos os testes, a piscina 1 e 4 são as que apresentam os piores resultados, 

sendo a 1 pela sua grande extensão e, assim, maior necessidade de ação do controlador, e a 

piscina 4 por ser o fim da cadeia, o que acarreta em ser a primeira a sofrer com saturação. 

Assim sendo, os gráficos a seguir mostram os resultados para o controlador neural 

para todas as piscinas. 

 

 

 

Figura 19: ηm e ηr para a piscina 1 com controlador neural 

Figura 20: ηm e ηr para a piscina 2 com controlador neural 
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Como pode se evidenciar, todas as piscinas apresentam resultados variando 

apenas com a amplitude de extração, e pouco se variando com o cenário de extração. Além 

disso, nota-se que, apenas nos casos extremos de extração com amplitude positiva há ηm 

muito diferente de zero, o que é causado pela saturação inferior do controlador ou pela ação 

de ressonância, como dito anteriormente, entre a parte CDM e CLJ do controlador neural. 

A título de comparação, serão apresentados, a seguir, os gráficos das piscinas 1 e 

4 para os casos testados com os controladores originais. 

Figura 21: ηm e ηr para a piscina 3 com controlador neural 

Figura 22: ηm e ηr para a piscina 4 com controlador neural 
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O resultado da primeira piscina em CLJ mostra valores extremamente pequenos, 

mesmo de ηm e ηr, o que é o padrão para todas as piscinas, exceto a 4 que, como evidenciado, 

encontra-se com valores muito dispares das demais, graças a saturação que acontece no 

controlador. 

Ainda se nota a dependência do sistema em relação ao cenário de extração, 

diferente do caso neural antes exemplificado. Por fim, os valores cenários onde o controlador 

neural tem ηm próximos a zero, apresentam-se valores próximos aos dessa arquitetura. 

Figura 24: ηm e ηr para a piscina 1 com CLJ (Simacek, 2015) 

Figura 23: ηm e ηr para a piscina 4 com CLJ (Simacek, 2015) 
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A seguir, os resultados para o caso CDM para as piscinas 1 e 4. 

 

 

Pode-se notar maior semelhança comportamental entre o CDM e o sistema com 

o controlador neural, o que era esperado. Contudo, tal comportamento dá-se mais 

semelhante referente ao ηm, já quanto ao ηr, o desempenho do controlador neural é maior, 

com desvios menores, e sofre menos influência em casos de amplitude de extração negativa. 

Figura 25: ηm e ηr para a piscina 1 com CDM (Simacek, 2015) 

Figura 26: ηm e ηr para a piscina 4 com CDM (Simacek, 2015) 
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Por fim, nota-se o que era esperado, que o controlador neural, apesar de uma 

semelhança maior com controlador CDM, seu desempenho dá-se muito melhor, graças a ação 

em conjunta das arquiteturas em sua aplicação. 

 

4.4 Discussão 

 

Com os resultados aqui apresentados, mostrou-se o que era o objetivo dessa 

monografia. O sistema com controladores neurais desenvolvidos, baseados nas duas 

arquiteturas usuais concebidas com controladores PI clássicos, mostrou vantagens em cima 

das duas arquiteturas. 

Mostrou-se capaz de operar autonomamente, o que não era esperado pela 

arquitetura CLJ, onde a entrada de fluxo de água no canal é tida como manual (Simacek, 2015). 

Conseguiu resultados técnicos substancialmente melhores do que a arquitetura CDM, com 

desvios padrão da média menores. 

Contudo, o controlador neural falha na fase a qual o sistema deve voltar ao estado 

nominal de funcionamento, dado o fato do sistema ser superdefinido, sendo sua principal 

falha em relação aos outros controladores. 

Por fim, vale notar que o controlador neural tem uma semelhança maior em 

relação ao controlador CDM do que com o CLJ, como era esperado desde sua concepção, dado 

o processo de treinamento desenvolvido. 
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5 Conclusão 

 

Com todas as evidências dadas, o objetivo desse trabalho dá-se por conquistado, 

tendo em vista que foi criado um controlador baseado em redes neurais, cujo treinamento foi 

objetificado nos dados de duas arquiteturas de controle dispares, que conseguiu obter 

desempenho superior as suas arquiteturas-mãe. 

Sendo pautada em noções de controle básico, cálculo e na teoria de redes neurais, 

o principal foco do trabalho foi o desenvolvimento do método pelo quais elas seriam 

treinadas. 

O treinamento diferenciado, baseado na adaptação sucessiva da rede com taxas 

de aprendizagem diferentes de iteração para iteração, foi a base do sucesso da criação desse 

sistema de controle. 

Apesar do controlador neural ser superdefinido, o que acarreta em múltiplas 

soluções para o caso nominal do problema, ele se mostrou extremamente eficiente em 

relação às duas outras arquiteturas. 

O consumo de água, apesar de maior do que nas demais arquiteturas, pode ser 

contornado com alguns adendos ao controlador da primeira comporta, o que não foi o foco 

deste trabalho. 

Por fim, o trabalho realizado dá-se por finalizado em vista de ter atingido seus 

objetivos. 
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